

Metrol. Meas. Syst., Vol. XIX (2012), No. 2, pp. 177-190.

__
Article history: received on Feb. 6, 2012; accepted on Apr. 27, 2012; available online on May 18, 2012.

METROLOGY AND MEASUREMENT SYSTEMS

Index 330930, ISSN 0860-8229
www.metrology.pg.gda.pl

EVALUATION OF MULTIMEDIA APPLICATIONS IN A CLUSTER-ORIENTED
ENVIRONMENT

Paweł Czarnul, Tomasz Dziubich, Henryk Krawczyk
Gdansk University of Technology, Faculty of Electronics Telecommunications and Informatics, Department of Computer Systems
Architecture, Narutowicza 12/11, 80-233 Gdansk, Poland (� pczarnul@eti.pg.gda.pl, dziubich@eti.pg.gda.pl, hkrawk@eti.pg.gda.pl,
 +48 58 347 2863)

Abstract

In the age of Information and Communication Technology (ICT), Web and the Internet have changed
significantly the way applications are developed, deployed and used. One of recent trends is modern design of
web-applications based on SOA. This process is based on the composition of existing web services into a single
scenario from the point of view of a particular user or client. This allows IT companies to shorten the product-
time to market process. On the other hand, it raises questions about the quality of the application, trade-offs
between quality factors and attributes and measurements of these. Services are usually hosted and executed in an
environment managed by its provider that assures the quality attributes such as availability or throughput.
Therefore, in this paper an attempt has been made to perform quality measurements towards the creation of
efficient, dependable and user-oriented Web applications. First, the process of designing service-based
applications is described. Next, metrics for subsequent measurements of efficiency, dependability and usability
of distributed applications are presented. These metrics will assess the efforts and trade-offs in a Web-based
application development. As examples, we describe a pair of multimedia applications which we have developed
in our department and executed in a cluster-based environment. One of them runs in the BeesyCluster
middleware and the second one in the Kaskada platform. For these applications we present results of
measurements and conclude about relations between quality attributes in the presented application development
model. This knowledge can be used to reason about such relations for new similar applications and be used in
rapid and quality development of the latter.

Keywords: quality measurements, software quality, quality model and measures, parallel computing, distributed
middleware, multimedia applications.

© 2012 Polish Academy of Sciences. All rights reserved

1. Introduction

 Nowadays the growing complexity of computer systems is forcing new approaches to
software development. One of recent trends is modern design of web applications based on
SOA [1]. This allows IT companies to shorten the product-time to market process. But on the
other side, it also implies the need for increasing of computing power and high flexibility of
components. This is an especially important aspect in applications that process huge-volume
data, i.e. multimedia applications. The increase in the processing performance is obtained by
deploying computationally expensive application modules in a cluster–oriented environment,
while high flexibility is maintained by standardizing ways of communication between
modules/services and the introduction of components reuse.

 Traditionally, development of high-performance applications requires knowledge and
experience of low-level solutions such as parallel MPI-based programming for image
recognition, processing of multimedia streams (variant A in Fig. 1). A better solution is to use
a middleware such as e.g. IBM WebSphere MQ (Variant B). Instead, in our department we
have created two solutions Kaskada [2] and BeesyCluster [3] for easy and fast building of

 P. Czarnul, T. Dziubich, H. Krawczyk: EVALUATION OF MULTIMEDIA APPLICATIONS IN A CLUSTER…

complex applications from services and ready-to-use blocks (variant C in Fig. 1). The process
of developing applications in such an environment is thus reduced to the following steps:
− develop the required algorithms which have not yet been implemented or use known

algorithms from available libraries,
− transform algorithms into independent tasks/services according to SOA interfaces,
− preparation of service scenarios possibly using available patterns (e.g. for recognition of

detected objects or events) and construction of the user interface.

Fig. 1. Alternatives to development of applications for cluster-oriented environment.

Among the components of these platforms, useful utilities for designing user applications

include: the library of algorithms, a repository of offered web services and a set of scenarios
defining the behaviour of the built user applications. The developed algorithms belong to the
following categories: object tracking, object detection, event recognition, estimating the
number of existing objects, identification and location of sound sources (general algorithms),
comprises monitoring changes in the space of process control processing, allocation of tasks,
management messages (system algorithms). Many of these algorithms operate on either static
input data or data streams provided to the algorithms at runtime.

For the full acceptance of such user applications, an evaluation of their quality level is also
important, including the study of interdependence of quality parameters [4]. For example, the
cost and effort of creation of services and the application results in corresponding service and
application reliability, cost and execution time.

The rest of the paper is organized as follows. Section 2 presents platforms BeesyCluster
and Kaskada that serve as environments for quality measurements of multimedia applications.
Section 3 presents a quality model along with attributes and metrics for the two platforms.
Section 4 shows results for real applications while Section 5 concludes the work.

2. Platforms supporting cluster-oriented computing

2.1. BeesyCluster and its model of a complex multimedia application

BeesyCluster1 [5, 6] is a middleware that allows many users to access, share and integrate
distributed resources and services. Users access resources such as commodity servers and
HPC clusters via single sign-on and individual accounts in BeesyCluster which can be bound
to one or more system accounts on the servers and clusters. The platform supports, among
others, an integrated environment that allows to:
− manage, develop and compile codes on multiple servers/clusters,
− apply versioning,
− launch and queue applications on servers/clusters with graphical interfaces through a Web

browser hiding details of queuing systems such as PBS, LSF, LoadLeveler, etc.,

1 https://lab527.eti.pg.gda.pl:10030/ek/Main

178

Metrol. Meas. Syst., Vol. XIX (2012), No. 2, pp. 177-190.

− monitor states of distributed clusters graphically,
− develop applications in groups with task assignment, sharing files among users and

interactive shared white boards and chat,
− become a provider and instantly publish own or existing applications as services right

from the server/cluster on which these have been compiled,
− assign cost and privileges to published services on a per - user or per - group basis; the

provider can be associated with reputation or reliability of their services,
− create, manage, optimize and run complex workflow applications built out of either own

services or services published by others and made available to the given user. This allows
integration of highly distributed services, optimization of service selection using various
QoS parameters. One centralized Java EE engine [5] and one distributed agent-base
engine [6] were developed for efficient running of such workflow applications. Such
workflows can be treated as reusable templates, static and dynamic optimization of service
selection and determination of optimal data flows [7] to minimize QoS including
execution time, cost and as proposed in this work reliability.

A workflow is represented by an acyclic directed graph in which nodes correspond to tasks
and edges to time dependencies between tasks [5, 6]. A set of services Si is assigned to each
task ti. Si contains services sij, each of which is capable of executing task ti. The basic
parameters [5, 6] of the task are cost cij and execution time tij. For each task one service needs
to be selected to perform the task. Data size processed by task ti and the selected service sij is
denoted as dij . One of possible optimization goals is minimization of the workflow execution
time min tworkflow with a bound on the cost of selected services

 cij dij Cmax
or minimization of a linear combination of cost and time workflowijij atdc +∑ .
Optimization of scheduling workflow applications, especially in cluster and grid
environments has been studied widely in the literature [8-12]. It should be noted that
BeesyCluster allows to extend easily the description of a service with more quality metrics
easily and subsequent incorporation of those in optimization. This work proposes how to
extend the models presented by one of the authors in [5, 6] by introducing reliability of both
the infrastructure as well as the services.

2.2. Kaskada platform

Kaskada platform [2], developed within the Mayday 2012 project2, is a novel approach in

the field of application development for the cluster environment. Kaskada is a universal
runtime platform for algorithms processing multimedia streams, e.g. videos and sound
recordings. The platform operates in the Galera cluster system [13], using its enormous
computing power and making it available for executed algorithms. It is a perfect solution for
algorithms presenting high demand on computational power, examples of which are image
recognition algorithms supporting medical endoscopic examinations of the gastrointestinal
tract. At the time of rapid development of high power computers, performing computation at
low level, and many arising challenges associated with more abstract computer vision tasks,
such as analyzing videos from surveillance cameras or analysis of medical images, there
appears to be a need for a solution effectively connecting the two areas, enabling successful
construction and execution of stream-processing algorithms in the environment of a
supercomputer.
The platform supports an application on three levels of functionality:

2 http://mayday2012.gda.pl

179

 P. Czarnul, T. Dziubich, H. Krawczyk: EVALUATION OF MULTIMEDIA APPLICATIONS IN A CLUSTER…

− Stream level – the goal is to maintain a massive load of multimedia data. The functionality
includes playing, stopping, archiving, replaying, distributing, multiplying of multimedia
streams and load balance;

− Service level – the goal is processing user/application requests. The functionality includes
invoking, finishing, monitoring, killing, assigning of user tasks;

− Event level – the goal is to provide means to communicate the processing state to the
user/application. The basic functionality is generating, storing, distributing, filtering,
relaying of output messages.

Except being a powerful execution environment for time-consuming algorithms, Kaskada also
provides a universal external interface in the form of automatically created web services,
enabling launching algorithms from remote applications, e.g. from the doctor's office.
Kaskada is also a framework facilitating the construction of stream algorithms. The platform
performs all video decoding tasks, passing raw frames to the algorithm. Also, extensive
communication mechanisms are provided by the platform, enabling construction of highly
parallelized, distributed algorithms in the form of computational services engaging multiple
processors.

3. Application quality, metrics, measurement techniques

3.1. Quality attributes and metrics in BeesyCluster

Execution of complex workflow applications in BeesyCluster was designed to allow to
control and find desired balance among the following quality attributes according to the
quality model presented in [5]:
− performance – achieving high parallel efficiency and scalability of processing multimedia

data is possible by engaging several services installed on various clusters and nodes to
process data in parallel. Scalability and speed-up is determined by: the ratio of the
computational time of the services compared to the communication time of transferring
data between services and the overhead of the underlying execution engine [5, 6]. It can be
affected by granularity of processing and data streaming; the workflow execution engine
in BeesyCluster allows two processing modes of each workflow node: streaming and non-
streaming and allows mixing nodes of the two types in one workflow. Furthermore, to
optimize the workflow execution time, it can automatically pack a large number of small
files into an archive to be sent to following workflow nodes to minimize the
communication latency. Efficiency of service implementations should be assured at the
service level; for example, a service based on application convert -normalize from
ImageMagick referring to disk space often could use faster scratch space on the cluster on
which it was deployed. This can decrease its running time by a factor of 10. For long-
running workflows the overhead of the workflow execution engine is small [6].

− dependability – defined in particular by:
reliability: Reliability of executing a complex task is assured by running it in the Java EE
environment supporting transactions; let rij denote the reliability of the infrastructure on
which service sij runs and also the reliability of the connection to the service. Reliability
of services/providers is defined as follows. Let Rij denote how reliable and precise the
results of the service are; a higher Rij will most likely result in a higher execution time of
the service or a greater cost because of the need for more powerful computers.
error tolerance - the model allows to continue running complex workflow applications
even if failures of particular services have occurred [6]; the execution engine
automatically reselects services for the remaining part of the workflow considering
available services and previous selections;

180

Metrol. Meas. Syst., Vol. XIX (2012), No. 2, pp. 177-190.

security – made sure by secure links and authorization between the client and
BeesyCluster servers and from BeesyCluster to remote servers/clusters.

− user satisfaction/usability which can be defined by:
ease of use and learnability – possible through easy creation and running using WWW
and Web Service interfaces; it was possible to define and run workflow applications by
students of Architectures of Internet Services from one to a few hours of work including
learning the environment. Non-specialists could use basic BeesyCluster functions listed
in Section 2.1 after just 2 hours of training.
productivity – the system allows to define and reuse complex workflow applications. It
allows rapid development and definition of either performance- or reliability-oriented
applications once and running these many times with adaptable runs and runtime
optimization.

Regarding the previously proposed optimization model [5, 6], the reliability parameters can
be updated at runtime by the underlying workflow execution engine based on the history. It is
possible to:
1. estimate the effective service execution time based on the learnt reliability of service

infrastructure i.e.:

() freefailure

tjijij trt −⋅= /1 .

where freefailure
tjt − denotes the execution time of service sij . This is not a problem even in the

linear integer problem formulation since r ij is updated at runtime but can be considered a
constant during optimization.

2. use the history and digital filters to estimate the effective running time of a service
(including potential failures) e.g.:

where x
ijt denotes the x-th last running time of service sij or

to assign higher weights to more recent measurements of execution time.
The end user may specify the minimum reliability of results returned by the service while
minimizing the execution time of the whole workflow, e.g.: min tworkflow with constraints on
the reliability of results and costs:

 selected ijRij Rmin , cij dij Cmax .

All constraints can be incorporated into the genetic algorithm proposed in [6]. Namely, the
random selection of services for a particular solution (chromosome) has to consider only the
available services that have reliabilities higher than the given threshold Rmin.

3.2. Quality attributes and metrics in Kaskada

Quality assessment was performed for the application of the medical recommendations.

The most important problems of computer-aided diagnosis include: reducing the time of
diagnosis, expanding the range of algorithms for medical recommendations and increasing the
efficiency of endoscopic image recognition. In the paper we concentrate on the first problem.
To resolve it, we have constructed application ERS 2012 which consists of three major

181

 P. Czarnul, T. Dziubich, H. Krawczyk: EVALUATION OF MULTIMEDIA APPLICATIONS IN A CLUSTER…

components: medical examination station, frontend server and Kaskada platform [14]. The
physician can upload a movie from an endoscope or a wireless capsule endoscopy using
Media Streaming Server to Frontend Server (FES). FES calls the appropriate scenario that is
located on the Kaskada platform. In ERS 2012, it is possible to transmit a movie from an
endoscope in real-time using the Frame Grabber module. But the well-known sequential
algorithms are not enough to perform efficient online recommendation. Several ways of
paralleling stream algorithms are enabled by the Kaskada platform. The parallelization tech-
niques described later in the article were applied with presented algorithms. In the Kaskada
platform, stream processing can be simplistically illustrated as shown in Fig. 2.

Fig. 2. Stream processing in the Kaskada platform.

n – number of frames in the whole stream
T0 – time at which the first frame arrives to the system, fixed to 0
Ti – time at which i-th frame’s report is available
Tp – time of the whole video processing, Tp = Tn - T0
l i – processing time of i-th frame
di – time interval between two succeeding reports, di = Ti+1 -Ti

For this application we propose the following evaluation metrics:
− performance – test of performance of a stream-processing application consisted of

throughput measurement. The throughput of the pipeline system is the maximum amount
of data that the system can process in a given time; videos were processed separately, with
maximal input frame rate (>100 fps). Every video was processed 100 times. Finally, the
average throughput H and σH (standard deviation) were calculated. While processing the
video, temporal throughput values hi have been calculated using the relationship:

ii dh /1= . After processing the whole video, the average throughput value H has been
computed as the mean value of the temporal values weighted by their time:

∑

−

=

−= 1

1

1
n

i id

n
H ,

which gives the ratio of the number of frames to the amount of time needed to process
them – the well-known FPS (frames per second) measure. Finally, to acquire the standard
deviation of the temporal throughput, its variance has been calculated using the weighted
formula

 ()
∑

∑
−

=

−

=
−

= 1

1

1

1
2

2
n

i i

n

i ii

H
d

dHh
σ ,

− dependability – is defined as the number of lost frames to the number of all analyzed
frames. This corresponds to the latency measurement. The latency is the time between the
arrival of a video frame at the system input and the time at which the detection report is
available at the system output; videos were processed separately, with their original frame
rate (25 fps) for all the versions of the algorithm which proved to provide a sufficient

182

Metrol. Meas. Syst., Vol. XIX (2012), No. 2, pp. 177-190.

throughput. Other configurations were skipped as being not suitable for real life use.
Every video was processed 10 times. Finally, the average L and the standard deviation σL
of the latency were calculated using the simple formulas:

n

l
L

n

i i∑ == 1 and
()
n

Ll
n

i i

L

∑ =
−

= 1
2

2σ .

For each case, required parameters were measured: the processing rate, represented by the
average number of frames processed per second, and the delay, being a single frame
processing time. Tests were performed on 5 video sequences of 720x576 resolution, twice
for each sequence, giving a total of 10 measurements for each case. Averaged results were
presented on charts in chapter 4.2. Standard deviations of each sample were marked in the
form of vertical bars at the average values.

− user satisfaction/usability which can be defined by an average measure of the diagnostic
time and matching abnormal regions. For usability testing, the examination data and
evaluation procedures were implemented with the assistance of medical doctors in the
Medical University of Gdansk, Poland. To ensure unbiased evaluations, the experiments
were set up under conditions of normal diagnostic procedures. MedEye – user interface of
the ERS2012 system – was installed on a medical examination station to present the
proposed method, which also supports common functions such as the capturing of
abnormal regions, the changing of display modes, the adjustment of skill levels, and
functions to navigate and scanning/browsing frame-by-frame.
Twenty sequences from patients were selected. The total length of these sequences was
307 minutes. The evaluations were carried out by two medical doctors. They were asked
to independently find and capture suspicious regions. The time codes of abnormal regions
as well as the events/activities of the medical doctors during the diagnostic procedures
were logged. For assessment of the capacity and performance, these data were then
analyzed and inspected as described below.
Average measure of the diagnostic time. To explore in detail the diagnostic time for each
evaluation section, the time code data at the moment of each start/stop action was
analyzed. In addition, frame-by-frame scanning to finding abnormal regions was also
inspected. The diagnostic time is the total of the following two components:
− Playing time: the total duration that each medical doctor played the sequences

continuously, without actions such as jumping, scanning, or frame navigation.
− Scanning/Browsing time: the total time for browsing or frame-by-frame scanning to

verify abnormal regions.
Thus, the main difference between this method and other methods [15] is that the reading
time details are inspected by two separate components, and this helps one to better
understand not only the time for viewing a sequence but also the time used for seeking
abnormal regions.
Matching abnormal regions captured. In the experiment, the medical doctors were asked
to capture abnormal regions independently. Then, knowing the degree to which the
abnormal region capture precised were accurate and complete would allow the
performance of the method to be evaluated, a routine for checking the relevant findings
was therefore implemented after the evaluations of the medical doctors. Previous studies
showed only the total diagnostic time without information regarding the verification of
abnormal regions detected. To check abnormal regions, we compared the results of two
medical doctors, and in cases of discrepancies a third gastroenterologist made the final
decision.

183

 P. Czarnul, T. Dziubich, H. Krawczyk: EVALUATION OF MULTIMEDIA APPLICATIONS IN A CLUSTER…

4. Quality assessment for BeesyCluster and Kaskada applications

4.1. BC methods and results for performance evaluation

As an example, the workflow application presented in Fig. 3 was used. This allows parallel
processing of RAW camera images given as input. For input, 80 RAW images of around
15 MB each (Pentax's PEF format) were used. Eight paths, each of which can be performed in
parallel were defined. Each path consists of three steps represented by successive workflow
tasks: conversion of a RAW image to a 16-bit TIFF, normalization of the TIFF and
conversion to JPG, resizing and reduction of quality and file size. Finally, a web album is
created out of the images processed by the parallel paths.

Fig. 3. A workflow application for processing digital images by 8 parallel paths.

1 2 3 4 5 6 7 8 9 10
800

900

1000

1100

1200

1300

1400

1500

1600

1700

number of images in data packet

w
o

rk
flo

w
 e

xe
cu

tio
n

tim
e

[s
]

Fig. 4. Impact of granularity on the workflow execution time.

184

Metrol. Meas. Syst., Vol. XIX (2012), No. 2, pp. 177-190.

Fig. 4 presents the impact of granularity on the workflow execution time, assuming that
data packets of a certain size (in this case the number of images in a packet) are passed from
one node to the next one as soon as it is available. This in fact implements parallel pipelining
by services executing the pipelines in parallel. The maximum number of images allowed to be
stored in a node at a time is 10 and the experiment aimed at minimization of tworkflow.

Furthermore, Fig. 5 presents execution times for a processing images workflow in which
services for a particular path were installed on separate or the same cluster. In the latter case,
160 input images are processed in the non-streaming fashion (following [5]) while in the first
case processing of 320 images (with increased efficiency of using a scratch space for
processing) was performed in the streaming mode via each service on a separate cluster using
HyperThreading for the 16 path configuration. Using Hyperthreading along with increased
communication costs due to many more clusters communicating between each other limits
scalability. On the other hand it increases flexibility since it corresponds to a scenario with
services offered by various providers. The goal was to minimize tworkflow. Cluster nodes with
two dual-core Intel Xeon 2.8 GHz processors with Hyperthreading with 4 GB RAM were
used.

Fig. 5. Workflow execution times [s] vs number of parallel paths.

Concerning the reliability, a workflow similar to that shown in Fig. 3 was used for

minimization of

 ∑ + workflowijij tdc 10 .

It consists of 9 paths with 3 groups of 3 paths each. Particular groups have services with
the following execution time/reliability/cost parameters: 2/3/5, 4/2/4, 8/1/3. Generally the cost
is higher for faster services. In this experiment it is also assumed that reliability of faster
services is higher because of using parallel machines to run them although it does not have to
be the case generally. Limiting the required reliability results in fewer parallel paths from
being selected and thus higher execution times. Table 1 shows the results, assuming minimum
reliability of any selected service to 1, 2 or 3. . Configuration X requires minimum reliability
of services selected at least equal to X. Correspondingly, configuration 1 results in more and
cheaper services available while configuration 3 in fewer and more expensive services
meeting this requirement.

185

 P. Czarnul, T. Dziubich, H. Krawczyk: EVALUATION OF MULTIMEDIA APPLICATIONS IN A CLUSTER…

Table 1. The relationship between the minimum required service reliability and the cost and execution time of a
workflow application in BeesyCluster.

Configuration/minimum
reliability of services selected 1 2 3

Execution time [s] 1651 1751 2085

Cost 1215 1872 2025

4.2. Kaskada methods and results for performance and usability evaluation

4.2.1. Performance

The execution environment of the platform ensured that each separate thread in every
service performing computations had an exclusive use of one processing core. The Kaskada
platform enables distributing consecutive frames of a video stream to different processors. In
this way, multiple frames can be processed concurrently, which can be denoted as a frame-
level parallelization. Fig. 6 presents a sample service implementing this case. A single node is
designated for distributing the frames among computational tasks organized in a layer,
performing as separate instances of the algorithm. The last node in this scenario collects
computed results and generates the output of the service.

Fig. 6. Distributing a frame sequence to 4 computational tasks.

The advantages of this technique are high versatility and simplicity of implementation,

since the mechanism is independent of the parallelized algorithm, provided that dependencies
between frames are not considered. Moreover, this solution allows the processors power to
effectively utilize and significantly reduce the overall processing time. Extension to any
number of processors is possible providing high scalability. Unfortunately, the mechanism in
no way reduces the processing time of a single frame, so that the delay remains unchanged
comparing to the sequential processing. Fig. 7 presents results achieved accordingly to the
number of processors in the processing layer. The experiments were performed for the four
diagnostic algorithms: BaopuLi1 [16], Kodogiannis1 [17], Magoulas1 [18] and Magoulas2
[19]. Each of the algorithms achieved stable processing rate growth. As expected, the delay
remained unchanged, yielding only slight fluctuations.

186

Metrol. Meas. Syst., Vol. XIX (2012), No. 2, pp. 177-190.

Fig. 7. Processing rate (left) and delay (right) of frame-level parallelized algorithms.

Each computational task in the Kaskada platform is actually a process that can be executed
using multiple threads. Since Galera's nodes are 8-core systems, it is a reasonable choice to
split the execution into 8 threads, which could potentially result in 8 times speedup in ideal
case. In practice, however, the achieved speedup is usually much lower due to memory access
conflicts and data synchronization between threads. The advantage of this solution is a
possibility to shorten the single frame processing time, at the same time reducing the delay.

Multithreading was implemented using the OpenMP mechanism. To accomplish this it was
required to identify time-consuming loops in the algorithms, which should be parallelized.
Therefore, execution time measurements of particular stages of the algorithm were carried
out, which indicated code regions to be parallized. Fig. 8 presents the achieved results
according to the number of processors used for multithreading.

As expected, the method results in much lower speedups than the previous one. While
algorithms BaopuLi1 and Kodogiannis1 gained satisfactory speedup with high efficiency,
including shortenening the single frame time, algorithms Magoulas1 and Magoulas2 did not
show the significant performance improvement. The reason for this fact is the low capability
of these algorithms for parallelization implicated from large data dependencies. The method
therefore enables a slight increase of the processing rate and the reduction of introduced
delay. In the case of less complex algorithms this technique may be sufficient. It can be also
succesfully pulled together with other methods like the previous concurrent frame processing
or pipeline processing.

Fig. 8. Processing rate (left) and delay (right) of algorithms parallelized using multithreading.

The most interesting parallelization technique offered by the Kaskada platform is

algorithm-level pipeline processing. The algorithms are divided into functional blocks to be
executed by separate computational tasks in the form of a pipeline. Independent blocks can be
put in a layer for concurrent execution. This allows to construct a service arranged adequately
to a logic scheme of the algorithm. Therefore, each of the blocks can be distributed to
different Galera's node and executed using multithreading, which enables to utilize a large
number of processors. An exemplary service implementing such scenario for the algorithm
BaopuLi1 is shown in Fig. 9.

187

 P. Czarnul, T. Dziubich, H. Krawczyk: EVALUATION OF MULTIMEDIA APPLICATIONS IN A CLUSTER…

Fig. 9. Conception of pipeline processing combined with multithreading for BaopuLi1 algorithm.

Pipeline processing assures an increase of the processing rate, while concurrent execution
of separate blocks, as well as multithreading, shortens the delay.

Fig. 10 shows the performance of algorithms measured for 8 variants utilising from 1 to 8
processors in each multithreaded node. Since the arrangement of the service is different for
each of the algorithms, also the ranges of possibly used numbers of processors differ between
them. Algorithm Magoulas1 was excluded from the test, since its structure prevents efficient
pipeline implementation.

The BaopuLi1 algorithm showed relatively stable performance growth with the increasing
number of processors. For 86 processors the processing rate exceeded 50, while the delay
dropped below 0.1 s. The Kodogiannis1 algorithm achieved best performance for 32
processors. A marginal performance gain was achieved for the algorithm Magoulas2. The
presented pipeline processing method therefore requires some sort of capability from the
parallelized algorithm. In return, very good performance can be achieved for highly modular
algorithms. This means that we can achieve a high level of dependability using an appropriate
number of processors for analysis (e.g. for the Kodogiannis1 algorithm we must use at least
12 processors).

Fig. 10. Processing rate (left) and delay (right) of algorithms parallelized using pipeline model with multithreading.

For usability assessment we proposed to determine the average measure of the diagnostic
time and the matching abnormal regions captured.

The results of the data analysis showed that the average viewing time was a 594 ± 93
s/sequence while the average scanning time was a 95 ± 25 s/sequence. The mean ratio of
viewing time/scanning time was 6.25, which implies that the variations between the viewing
and scanning time sequences were quite large. The average diagnostic time for each sequence,
with the mean value being approximately 689 ± 118 s/sequence. The resulting average
diagnostic time of the extracted sequence with a length of 307 minutes (18420 s) implies that

188

Metrol. Meas. Syst., Vol. XIX (2012), No. 2, pp. 177-190.

when using the proposed method the time consumed is around 27% of the length of the
sequence.

The total number of abnormal regions captured by doctor A was 74 regions. The numbers
of abnormalities present differed with each sequence. For some sequences, there were from
2 to 6 abnormal regions, and thus the rate of matching in these sequences was high. For two
sequences, however, it included 11 regions, and as it was the sequence with the maximum
number of abnormalities present, it had a lower rate of matching. Overall, the average
matching rate of the abnormal regions was 75% for one of the medical doctors, 70% for the
second one. These results imply that although finding suspicious regions depends on other
factors, such as one’s personal judgment and skills, the concentration of the physicians as well
as the number of abnormalities present on the video material. The proposed method produces
acceptable rates of capture of relevant findings.

5. Conclusions

The paper presented two platforms BeesyCluster and Kaskada allowing rapid and easy
composition of distributed applications out of ready-to-use services and components offering
high usability to the user. These are especially useful for multimedia applications through the
ability to quickly connect services and components, reuse already defined services and
patterns, engage ready-to-use algorithms for optimization of QoS when running the
application. For BeesyCluster, an application for parallel processing of digital images by
distributed services was shown. It was demonstrated how granularity and either local or
distributed environment influence the execution time and scalability and how to achieve
desired QoS requirements involving execution time, reliability and cost. For Kaskada, an
application for stream processing of endoscopic videos was presented. Parallelization
capabilities of the Kaskada platform enabled a considerable performance gain for the
investigated algorithms. The presented medical recognition algorithms suffered from high
computational complexity, resulting in long execution time. Utilizing the computational
power of the Galera supercomputer, Kaskada accelerated all the algorithms to perform fairly
well in the offline processing mode, providing high speedups with an increasing number of
processors. For sufficiently divisible algorithms, also online processing became possible by
utilizing pipeline processing supported by multithreading.

Furthermore, the two platforms are complementary in terms of types of applications and
QoS goals as indicated in Table 2.

Table 2. Preference of platforms for particular types of applications and QoS goals.

189

 P. Czarnul, T. Dziubich, H. Krawczyk: EVALUATION OF MULTIMEDIA APPLICATIONS IN A CLUSTER…

References

[1] Krafzig, D., Banke, K., Slama, D. (2004). Enterprise SOA: Service-Oriented Architecture Best Practices.

Prentice Hall PTR.

[2] Krawczyk, H., Proficz, J. (2010). Kaskada – multimedia processing platform architecture. In Proc.
International Conference on Signal Processing and Multimedia Applications (SIGMAP 2010), 26-31.

[3] Czarnul, P. (2006). Reaching and Maintaining High Quality of Distributed J2EE Applications –
BeesyCluster Case Study. Software Engineering Techniques SET 2006, Warsaw, Poland, in: Software
Engineering Techniques: Design for Quality, ed. K. Sacha, Springer, International Federation for
Information Processing, a Springer Series in Computer Science, 179-190.

[4] Krawczyk, H., Wiszniewski, B. (1998). Analysis and testing of distributed software applications.
Baldock: Res. Stud. Press.

[5] Czarnul, P. (2010). Modeling, run-time optimization and execution of distributed workflow applications
in the JEE-based BeesyCluster environment. Journal of Supercomputing. DOI:
10.1007/s11227-010-0499-7, Springer, 1-26.

[6] Czarnul, P., Matuszek, M., Wójcik, M., Zalewski, K. (2011). BeesyBees: A mobile agent-based
middleware for a reliable and secure execution of service-based workflow applications in BeesyCluster.
Multiagent and Grid Systems Journal, IOS Press, 7(6), 219-241.

[7] Czarnul, P. (2010). Modelling, Optimization and Execution of Workflow Applications with Data
Distribution, Service Selection and Budget Constraints in BeesyCluster. In Proceedings of 6th Workshop
on Large Scale Computations on Grids and 1st Workshop on Scalable Computing in Distributed Systems,
International Multiconference on Computer, 5, 629-636.

[8] Wieczorek, M., Hoheisel, A., Prodan R. (2009). Towards a general model of the multi-criteria workflow
scheduling on the grid. Future Generation Computer Systems, 25, 237-256.

[9] Yu, J., Buyya, R. (2005). A taxonomy of workflow management systems for grid computing. Journal of
Grid Computing, 3, 171-200.

[10] Yu, J., Buyya, R., Ramamohanarao, K. (2008). Workflow Scheduling Algorithms for Grid Computing.
Springer. In Metaheuristics for Scheduling in Distributed Computing Environments, Berlin, Germany,
146, 173-214.

[11] Chin, S.H., Suh, T., Yu, H.C. (2010). Adaptive service scheduling for workflow applications in service-
oriented grid. Journal of Supercomputing, 52, 253-283.

[12] Garg, S.K., Buyya, R., Siegel, J. (2010). Time and cost trade-off management for scheduling parallel
applications on utility grids. Future Generation Computer Systems, 26, 1344-1355.

[13] http://i.top500.org/system/9260 (January 2012).

[14] Blokus, A., Jedrzejewski, M., (2011). The design of an intelligent medical space supporting automated
patient interviewing. In Proceedings of the 5th International Conference of Young Scientists: Computer
Science & Engineering, Lviv, Ukraine, 16-19.

[15] Iakovidis, D.K., Tsevas, S., Polydorou, A. (2010). Reduction of capsule endoscopy reading times by
unsupervised image mining. In Computerized Medical Imaging and Graphics. Biomedical Image
Technologies and Methods - BIBE 2008, 34(6), 471-478.

[16] Li, B., Meng, M. (October 2009). Small bowel tumor detection for wireless capsule endoscopy images
using textural features and support vector machine. In Proceedings IEEE/RSJ International Conference
on Intelligent Robots and Systems, 498 - 503.

[17] Kodogiannis, V.S., Boulougoura, M. (2007). An adaptive neurofuzzy approach for the diagnosis in
wireless capsule endoscopy imaging. International Journal of Information Technology, 13(1), 46-56.

[18] Magoulas, G.D., Plagianakos, V.P., Vrahatis, M.N. (2004). Neural network-based colonoscopic diagnosis
using on-line learning and differential evolution. Applied Soft Computing, 4(4), 369-379.

[19] Magoulas, G.D. (2006). Neuronal networks and textural descriptors for automated tissue classification in
endoscopy. Oncology Reports, 15, 997-1000.

190

